Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
How is trait diversity in a community apportioned between and within coevolving species? Disruptive selection may result in either a few species with large intraspecific trait variation (ITV) or many species with different mean traits but little ITV. Similar questions arise in spatially structured communities: heterogeneous environments could result in either a few species that exhibit local adaptation or many species with different mean traits but little local adaptation. To date, theory has been well-equipped to either include ITV or to dynamically determine the number of coexisting species, but not both. Here, we devise a theoretical framework that combines these facets and apply it to the above questions of how trait variation is apportioned within and between species in unstructured and structured populations, using two simple models of Lotka-Volterra competition. For unstructured communities, we find that as the breadth of the resource spectrum increases, ITV goes from being unimportant to crucial for characterizing the community. For spatially structured communities on two patches, we find no local adaptation, symmetric local adaptation, or asymmetric local adaptation, depending on how much the patches differ. Our framework provides a general approach to incorporate ITV in models of eco-evolutionary community assembly.more » « less
-
Abstract Species‐abundance distributions (SADs) describe the spectrum of commonness and rarity in a community. Beyond the universal observation that most species are rare and only a few common, more‐precise description of SAD shape is controversial. Furthermore, the mechanisms behind SADs and how they vary along environmental gradients remain unresolved. We lack a general, non‐neutral theory of SADs. Here, we develop a trait‐based framework, focusing on a local community coupled to the region by dispersal. The balance of immigration and exclusion determines abundances, which vary over orders‐of‐magnitude. The local trait‐abundance distribution (TAD) reflects a transformation of the regional TAD. The left‐tail of the SAD depends on scaling exponents of the exclusion function and the regional species pool. More‐complex local dynamics can lead to multimodal TADs and SADs. Connecting SADs with trait‐based ecological theory provides a way to generate more‐testable hypotheses on the controls over commonness and rarity in communities.more » « less
-
null (Ed.)The spread of an enteric pathogen in the human gut depends on many interacting factors, including pathogen exposure, diet, host gut environment, and host microbiota, but how these factors jointly influence infection outcomes remains poorly characterized. Here, we develop a model of host-mediated resource-competition between mutualistic and pathogenic taxa in the gut that aims to explain why similar hosts, exposed to the same pathogen, can have such different infection outcomes. Our model successfully reproduces several empirically observed phenomena related to transitions between healthy and infected states, including (1) the nonlinear relationship between pathogen inoculum size and infection persistence, (2) the elevated risk of chronic infection during or after treatment with broad-spectrum antibiotics, (3) the resolution of gut dysbiosis with fecal microbiota transplants, and (4) the potential protection from infection conferred by probiotics. We then use the model to explore how host-mediated interventions, namely shifts in the supply rates of electron donors (e.g., dietary fiber) and respiratory electron acceptors (e.g., oxygen), can potentially be used to direct gut community assembly. Our study demonstrates how resource competition and ecological feedbacks between the host and the gut microbiota can be critical determinants of human health outcomes. We identify several testable model predictions ready for experimental validation.more » « less
-
Abstract While natural communities can contain hundreds of species, modern coexistence theory focuses primarily on species pairs. Alternatively, the structural stability approach considers the feasibility of equilibria, gaining scalability to larger communities but sacrificing information about dynamic stability. Three‐species competitive communities are a bridge to more‐diverse communities. They display novel phenomena while remaining amenable to mathematical analysis, but remain incompletely understood. Here, we combine these approaches to identify the key quantities that determine three‐species competition outcomes. We show that pairwise niche overlap and fitness differences are insufficient to completely characterize competitive outcomes, which requires a strictly triplet‐wise quantity: cyclic asymmetry, which underlies intransitivity. Low pairwise niche overlap stabilizes the triplet, while high fitness differences promote competitive exclusion. The effect of cyclic asymmetry on stability is complex and depends on pairwise niche overlap. In summary, we elucidate how pairwise niche overlap, fitness differences and cyclic asymmetry determine three‐species competition outcomes.more » « less
-
Abstract The relationship between biodiversity and ecosystem function (BEF) captivates ecologists, but the factors responsible for the direction of this relationship remain unclear. While higher ecosystem functioning at higher biodiversity levels (‘positive BEF’) is not universal in nature, negative BEF relationships seem puzzlingly rare. Here, we develop a dynamical consumer‐resource model inspired by microbial decomposer communities in pitcher plant leaves to investigate BEF. We manipulate microbial diversity via controlled colonization and measure their function as total ammonia production. We test how niche partitioning among bacteria and other ecological processes influence BEF in the leaves. We find that a negative BEF can emerge from reciprocal interspecific inhibition in ammonia production causing a negative complementarity effect, or from competitive hierarchies causing a negative selection effect. Absent these factors, a positive BEF was the typical outcome. Our findings provide a potential explanation for the rarity of negative BEF in empirical data.more » « less
-
Abstract Despite the well known scale‐dependency of ecological interactions, relatively little attention has been paid to understanding the dynamic interplay between various spatial scales. This is especially notable in metacommunity theory, where births and deaths dominate dynamics within patches (the local scale), and dispersal and environmental stochasticity dominate dynamics between patches (the regional scale). By considering the interplay of local and regional scales in metacommunities, the fundamental processes of community ecology—selection, drift, and dispersal—can be unified into a single theoretical framework. Here, we analyze three related spatial models that build on the classic two‐species Lotka–Volterra competition model. Two open‐system models focus on a single patch coupled to a larger fixed landscape by dispersal. The first is deterministic, while the second adds demographic stochasticity to allow ecological drift. Finally, the third model is a true metacommunity model with dispersal between a large number of local patches, which allows feedback between local and regional scales and captures the well studied metacommunity paradigms as special cases. Unlike previous simulation models, our metacommunity model allows the numerical calculation of equilibria and invasion criteria to precisely determine the outcome of competition at the regional scale. We show that both dispersal and stochasticity can lead to regional outcomes that are different than predicted by the classic Lotka–Volterra competition model. Regional exclusion can occur when the nonspatial model predicts coexistence or founder control, due to ecological drift or asymmetric stochastic switching between basins of attraction, respectively. Regional coexistence can result from local coexistence mechanisms or through competition‐colonization or successional‐niche trade‐offs. Larger dispersal rates are typically competitively advantageous, except in the case of local founder control, which can favor intermediate dispersal rates. Broadly, our models demonstrate the importance of feedback between local and regional scales in competitive metacommunities and provide a unifying framework for understanding how selection, drift, and dispersal jointly shape ecological communities.more » « less
-
Summary Many plant species simultaneously interact with multiple symbionts, which can, but do not always, generate synergistic benefits for their host. We ask if plant life history (i.e. annual vs perennial) can play an important role in the outcomes of the tripartite symbiosis of legumes, arbuscular mycorrhizal fungi (AMF), and rhizobia.We performed a meta‐analysis of 88 studies examining outcomes of legume–AMF–rhizobia interactions on plant and microbial growth.Perennial legumes associating with AMF and rhizobia grew larger than expected based on their response to either symbiont alone (i.e. their response to co‐inoculation was synergistic). By contrast, annual legume growth with co‐inoculation did not differ from additive expectations. AMF and rhizobia differentially increased phosphorus (P) and nitrogen (N) tissue concentration. Rhizobium nodulation increased with mycorrhizal fungi inoculation, but mycorrhizal fungi colonization did not increase with rhizobium inoculation. Microbial responses to co‐infection were significantly correlated with synergisms in plant growth.Our work supports a balanced plant stoichiometry mechanism for synergistic benefits. We find that synergisms are in part driven by reinvestment in complementary symbionts, and that time‐lags in realizing benefits of reinvestment may limit synergisms in annuals. Optimization of microbiome composition to maximize synergisms may be critical to productivity, particularly for perennial legumes.more » « less
An official website of the United States government
